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Abstract Lead based complex compounds, 0.8PbFe0.5−
Ta0.5O3-0.2PbTiO3 (0.8PFT-0.2PT) ceramics, were prepared

by the solid state reaction method, and the corresponding di-

electric, ferroelectric and ferromagnetic properties were in-

vestigated. As the PT phase was added to the PFT phase, the

Curie temperature of 0.8PFT-0.2PT ceramics increased. The

ferroelectric P-E and ferromagnetic M-H hysteresis loops

were observed at the same time. The ferroelectric proper-

ties depend on the formation of the perovskite 0.8PFT-0.2PT

phase; however, the ferromagnetic properties depend on the

formation of the pyrochlore Pb3FeTaO7 phase.
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1 Introduction

Lead based compounds A(B′, B′′)O3 show ferroelectric re-

laxor behaviors [1, 2]. The relaxor behaviors were explained

by the partially ordered B’ and Bin the perovskite structure.

The ferroelectrics relaxor behaviors were well known for var-

ious solid solutions such as PbMn1/3Nb2/3O3-PbTiO3(PMN

-PT), PbMn1/3Nb2/3O3-PbMg2/3W1/3O3-PbTiO3 (PMN-

PMW-PT) and PbZn1/3Nb2/3O3-PbTiO3 (PZN-PT) [2].

However, such lead based compounds are difficult to
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fabricate without the formation of a pyrochlore phase that can

be determinate to the dielectric properties [3]. One of them,

PbFe0.5Ta0.5O3 (PFT), is a compound belonging to the lead

based complex perovskites with a general formula Pb(B3+
1/2,

B5+
1/2)O3 [4]. Next, Fe and Ta ions are believed to randomly

occupy the B sites of ABO3 perovskite structure, which

caused the relaxor behaviors. On the other hand, PbTiO3

(PT) is a normal ferroelectrics with a sharp dielectric peak

at Tc =∼ 500◦C. In this study, PbFe0.5Ta0.5O3-PbTiO3 solid

solutions systems [5, 6] were prepared, and these ceramics

exhibit ferroelectric P-E and ferromagnetic M-H hysteresis

loops at the same time. Referring to the formation of the

pyrochlore Pb3FeTaO7, the dielectric, ferroelectric and fer-

romagnetic properties of the 0.8PbFe0.5Ta0.5O3-0.2PbTiO3

were investigated.

2 Experimental work

PbFe0.5Ta0.5O3 (PFT), 0.8PbFe0.5Ta0.5O3-0.2PbTiO3

(0.8PFT-0.2PT) and Pb3FeTaO7 ceramics were prepared

by the solid state reaction method. The raw materials for

the PFTand 0.8PFT-0.2PT and Pb3FeTaO7 ceramics were

lead monoxide (99.9%), α-iron Oxide (99.9%), titanium

oxide (99.95 %) and tantalum oxide (99.99%). The mixed

raw materials firstly calcined at 950◦C for 5 h, and secondly

calcined at 1100◦C for 5 hours. The calcined powders

were ground and mixed in a jar. In addition to a dry mixed

compound (process-1) of the 0.8PFT-0.2PT compositions,

an alcohol mixed compounds (process-2) was also prepared.

The powders were pressed into pellets with 15 mm diam

and 2.5 mm thick at a pressure of about 50 kg/cm2. The

ceramic pellets were sintered at 1170◦C for 5 h in air. A

Pt electrode was coated on the ceramic samples by DC

sputtering. The capacitance and loss tangent were measured
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Fig. 1 XRD patterns of the

PFTand 0.8PFT-0.2PT

(process-1 and Process-2) and

Pb3FeTaO7

by an impedance analyzer (HP4194A). Ceramic samples

were heated with a ratio of 1◦C/min and measured over

the frequency range of 100 Hz–1 MHz. Ferroelectric P-E

and ferromagnetic M-H hysteresis loops were measured by

using a Sawyer-Tower circuit and a VSM (Vibrating Sample

Magnetometer), respectively.

3 Results and discussion

The phase formation and crystal structure were examined

by X-ray diffraction (XRD) [7, 8]. Figure 1 shows the XRD

patterns of the PFT, 0.8PFT-0.2PT and Pb3FeTaO7 ceram-

ics. The PFT-PT phase is accompanied by the pyrochlore

Pb3FeTaO7 phase and PbO phase. Previously, it was under-

stand that the lead-based ferroelectric relaxors inevitably in-

volved the formation of the pyrochlore phase [9]. In this

study, the phyrochlore Pb3FeTaO7 and PbO phases formed

as well as the perovskite 0.8PFT-0.2PT phase, and the forma-

tion of mixed phases depended on various processing factors.

In addition to the dry mixed compound (process-1), the

alcohol mixed compound (process-2) was also prepared.

Compared to process-1, the pyrochlore Pb3FeTaO7 phase

decreased when utilizing process-2. The formation of the

pyrochlore Pb3FeTaO7 phase depends on such factors as the

sintering temperature, raw material composition and process-

ing procedure. Previously, it was reported that the pyrochlore

Pb3FeTaO7 phase decreased at sintering temperatures above

950◦C [9]. However, the mechanism of the phase forma-

tion is different when examined in detail. In addition to

the preparation of the 0.8PFT-0.2PT ceramics, under the

same process, the Pb3FeTaO7 ceramics with only pyrochlore

phases were also prepared to explain the ferromagnetic prop-

erties. Under these conditions, the sintering temperatures of

the Pb3FeTaO7 ceramics were 700◦C, 950◦C, 1170◦C and

1200◦C at 6 h. Below the sintering temperature of 1170◦C, the

prepared ceramics show mixed phases of PbO, Pb3FeTaO7

and PFT. After being sintered at 1200◦C, only the well-

defined Pb3FeTaO7 pyrochlore phase remained.

Figure 2 shows the temperature dependence of the di-

electric constant of the PFT and 0.8PFT-0.2PT ceramics
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Fig. 2 Temperature dependent dielectric constant of the PFTand

0.8PFT-0.2PT measured at 100 kHz
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Fig. 3 Ferroelectric P-E

hysteresis loops of the

0.8PFT-0.2PT ceramics

measured at room temperature

measured at a frequency of 100 kHz. The dielectric anomaly

of the PFT ceramic was observed at about −25◦C [6, 10]. The

phase transition shows a broad dielectric constant maximum

peak, which agrees with the previous results [10]. Previously,

the PFT was known to the relaxor ferroelectrics [11], which

was related to the disordered state of Fe and Ta ions in the

B-site cation.

As the PT phase (Tc = 500◦C) added to the the PFT phase

(Tc = −25◦C), the Tc of 0.8PFT-0.2PT ceramics increased,

and the corresponding phase transition showed a sharp di-

electric constant maximum peak. The phase transition be-

haviors of PFT-PT ceramics are similar to that of PMN-PT

ferroelectrics relaxors [12, 13] in the view of a solid so-

lution system of a relaxor (PMN)—a normal ferroelectrics

(PbTiO3).

In addition to the dielectric properties, the ferroelectric and

ferromagnetic properties of 0.8PFT:0.2PT ceramics remark-

ably depend on the formation of the perovskite phase and py-

rochlore Pb3FeTaO7 phase. Figure 3 shows the ferroelectric

P-E hysteresis loops of 0.8PFT-0.2PT ceramics prepared

by process-1 and process-2. Well-saturated ferroelectric P-E

hysteresis loops were observed in both. At an applied elec-

trical field of about 7 kV/cm, the remanent polarization Pr

of the 0.8PFT:0.2PT ceramics prepared by process-1 and

process-2 is 5 μC/cm2 and 2 μC/cm2, respectively. Thus,

the remnant polarization of 0.8PFT:0.2PT ceramics with in a

low pyrochlore Pb3FeTaO7 phase was remarkably enhanced

[14].

Figure 4 shows the ferromagnetic M-H hysteresis loops of

0.8PFT:0.2PT ceramics prepared by process-1 and process-

2. Well-saturated ferromagnetic M-H hysteresis loops were

observed in both. The magnetic moment Mr of 0.8PFT:0.2PT

ceramics prepared by process-1 was higher than that of

0.8PFT:0.2PT ceramics prepared by process-2. At the ap-

plied magnetic field of 5000 Oe, the Mr of 0.8PFT:0.2PT

ceramics by process-1 was 0.5 emu/g, which is higher than

that of 0.8PFT:0.2PT ceramics prepared by process-2 with

Mr = 0.05 emu/g.
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Fig. 4 Ferromagnetic M-H

hysteresis loops of the

0.8PFT-0.2PT ceramics

measured at room temperature

Springer



372 J Electroceram (2006) 16:369–372

-6000 -4000 -2000 0 2000 4000 6000
-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pb
3
FeTaO

7

(pyrochlore)

Hc(Oe)

M
o

m
e

n
t(

e
m

u
/g

)

Fig. 5 Ferromagnetic M-H hysteresis loops of the pyrochlore

Pb3FeTaO7phase

Regarding the results of the XRD, P-E and M-H hysteresis

loops, the ferroelectric and ferromagnetic properties depend

on the formation of the perovskite 0.8PFT:0.2PT and the

pyrochlore Pb3FeTaO7 phases.

Figure 5 shows the ferromagnetic M-H hysteresis loops

of the pyrochlore Pb3FeTaO7phase. Well-saturated ferro-

magnetic M-H hysteresis loops were observed, and the

magnetic moment Mr was 2.7 emu/g. Thus, the py-

rochlore Pb3FeTaO7 phase contributed to the ferromagnetic

properties.

For the preparation of the lead complex compound

0.8PFT:0.2PT ceramics, the pyrochlore Pb3FeTaO7 phase

was formed as well as the perovskite 0.8PFT:0.2PT phase.

The lead-based ferroelectrics inevitably involved the py-

rochlore phase, and the formation of pyrochlore phases de-

pended on processing factors. The degree of the perovskite

0.8PFT:0.2PT and the pyrochlore Pb3FeTaO7 phases con-

tributed to the ferroelectric and ferromagnetic properties, re-

spectively.

4 Conclusions

The dielectric, ferroelectric and ferromagnetic properties of

the lead complex compound 0.8PFT:0.2PT ceramics were in-

vestigated. The Curie temperature of 0.8PFT-0.2PT ceramic

was 65◦C, which is higher than that of PFT ceramics. For

the preparation of 0.8PFT:0.2PT ceramics, the pyrochlore

Pb3FeTaO7 phase was also formed. Then, the ferroelectric

P-E and ferromagnetic M-H hysteresis loops were observed.

The formation of the perovskite phase contributed to the

ferroelectric properties. However, the formation of the py-

rochlore Pb3FeTaO7 phase contributed to the ferromagnetic

properties.
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